Comparing Finite Type Invariants of Knots and Integral Homology

نویسنده

  • STAVROS GAROUFALIDIS
چکیده

Using elementary counting methods of weight systems for nite type invariants of knots and integral homology 3-spheres, in the spirit of B-NG], we answer positively three questions raised in Ga]. In particular, we exhibit a one-to-one map from the space of nite type invariants of integral homology 3-spheres to the space of nite type invariants of knots in S 3 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Alexander Polynomial and Finite Type 3-manifold Invariants

Using elementary counting methods, we calculate the universal invariant (also known as the LMO invariant) of a 3-manifold M , satisfying H1(M,Z) = Z, in terms of the Alexander polynomial of M . We show that +1 surgery on a knot in the 3-sphere induces an injective map from finite type invariants of integral homology 3-spheres to finite type invariants of knots. We also show that weight systems ...

متن کامل

Towards an Elementary Theory of Finite Type Invariants of Integral Homology Spheres

Following Ohtsuki, Garoufalidis, and Habegger we provide an elementary introduction to nite type invariants of integral homology spheres, culminating with a proof of the upper bound for the magnitude of the space I of such invariants in terms of the space A(;) of oriented trivalent graphs modulo the so-called AS and IHX relations. We raise the issue of \the fundamental theorem" for nite type in...

متن کامل

Two constructions of weight systems for invariants of knots in non-trivial 3-manifolds

A new family of weight systems of finite type knot invariants of any positive degree in orientable 3-manifolds with non-trivial first homology group is constructed. The principal part of the Casson invariant of knots in such manifolds is split into the sum of infinitely many independent weight systems. Examples of knots separated by corresponding invariants and not separated by any other known ...

متن کامل

Hyperbolic Three-manifolds with Trivial Finite Type Invariants

We construct a hyperbolic three-manifold with trivial finite type invariants up to an arbitrarily given degree. The concept of finite type invariants for integral homology three-spheres was introduced by T. Ohtsuki in [11] including the Casson invariant [1] for the first non-trivial example. It attracts not only mathematicians but also physicists since it is closely related to E. Witten’s quant...

متن کامل

On the quantum sl2 invariants of knots and integral homology spheres

We will announce some results on the values of quantum sl2 invariants of knots and integral homology spheres. Lawrence’s universal sl2 invariant of knots takes values in a fairly small subalgebra of the center of the h-adic version of the quantized enveloping algebra of sl2 . This implies an integrality result on the colored Jones polynomials of a knot. We define an invariant of integral homolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996